

AMTEC for Space Radioisotope Power Applications

Mark L. Underwood and Jack Mondt Jet Propulsion Laboratory

4800 Oak Grove Drive

ph# 818/354-9731

MS 303-300

fax 818/393-4272

Pasadena, CA9101 6

e-mail: Mark. Underwood@ jpl.nasa.gov

This work was done by the
Jet Propulsion Laboratory, California Institute of Technology
under a contract with the
National Aeronautics and Space Administration

Advanced Deep Space Systems Development **Program**

- X2000 Mission System Development
 - » Development of engineering model spacecraft for outer planets missions
 - » Testbed for flight system component development!
- Ice and Fire/Outer Planets Exploration Program
 - » Several Missions being considered:
 - » Europa Orbiter
 - » Pluto Express
 - » Solar Probe

Mission Power Demand

Europa Orbiter	~4 years	1.0 to <i>5.2</i> Au	150 W _e	2MRad radiation from Jupiter orbit
Pluto Express	10 to 16 years	<i>0.7</i> to 33 Au	104 W _e	Venus Flyby trajectory
Solar Probe	~5 years	5.2 to 0.02 Au	100 We Jupiter Gravity Assist trajectory	

Power Demand includes 30% contingency for growth

Advanced Radioisotope Power Source Program

- Initiated to develop new power sources potentially applicable to new missions
 - » Near term needs:
 - Europa Orbiter, Pluto Express
 - Other Outer Planets Missions
 - » Far term:

smaller, lower power probes

- ARPS Plans
 - » Develop Advanced RPS for)(2000
 - Deliver operational engineering model by end of 1999
 - Be prepared to deliver flight ARPS in the event a mission is approved and the ARPS is selected as the power supply
 - » Develop third generation power source concepts
 - mW, RPS10 through ART (Advanced RPS Technology)

Advanced Radioisotope Power Sources

Advanced **Technologies:** New heat source » 2 to 4 Wt class » 60 to 120 Wt cl » Alternative Racs New con » 0.10 We class » 10 We class » 100 We class New thermat.mngt. » Microspacecraft RHU Harsh environments

- » Hermetically sealed
- » High "g"
- » High temperature
- » High pressure
- » High radiation dose

RPS Program Roadmap

RPS Efficiency Compared to Carnot

Advanced Thermal-to-Electric Power Options

- Advanced Radioisotope Power Source (ARPS) Converter Options Evaluated for)(2000:
 - » AMTEC: Alkali Metal Thermal-to-Electric Converter
 - Thermally regenerated sodium concentration cell
 - » Stirling Engine Converter
 - Closed cycle heat engine
 - » TPV: Thermophotovoltaic
 - Photovoltaic conversion of thermal radiation
- All Options use Existing Heat Sources
 - General Purpose Heat Source modules inherited from Cassini spare RTG
 - » Available after 1997 launch of Cassini
 - Note: all systems concepts may be optimized at different points to increase power or decrease mass. Further design and development work is required.

X2000 ARPS Technology Selection

- Technology Evaluation Team Evaluated Status of Each Option
 - » DOE led evaluation team with AFPL, JPL, and NASA participation
 - » DOE/NASA/JPL Management Team made selection
- Status
 - » Evaluation Complete: AMTEC was selected
 - » DOE RFP issued Feb 17,1997
 - Seeking Systems Contractor for X2000 ARPS development
 - » Proposals being evaluated
- Technology Evaluation Criteria
 - » Performance (demonstrated performance and projected system)
 - » Development and Cost/Production and Cost/Schedule Risk
 - » Spacecraft Interface and Operations
 - » Ability to Scale Conversion (50 W, 10 W)
 - » Safety Impacts
- ART Workshop being planned for June, 1997
 - » Sponsored by DOE

Key Trades: AMTEC or Stirling?

S/C Interface & Operations Comparison

- » AMTEC
 - No issues that impact the s/c
- » Stirling Engines
 - Possible 90 Hz vibration
 - . Up to 0.2 N force in axis of motion
 - Less than 3.15 N-m spec
 - » depends on s/c configuration
 - EMI of AC power output
 - Engine control electronics
 - part of s/c avionics
 - active control of engine phase
 - engine lock-out on failure
 - mass of electronics (~1 kg) not included with design mass

Development Status

» Stirling engines have a lower risk for development compared to AMTEC due to higher level of maturity

AMTEC Systems Concept

Advantages

- » Low mass
- » Few GPHSS
- » Small radiator
- » Rejected heat (300 "C) useful for s/c thermal control
- » No radiation degradation
- » Static except for Sodium
- Potential for space solar-thermal and commercial terrestrial applications

Issues

- » Microgravity operation not demonstrated
- » Lifetime not demonstrated
- » System performance not demonstrated

AMTEC Design from:
Schock, A., Noravian C.,
Or, C., and Kumar, K., (1997)
"Design of Radioisotope Space
Power Systems Based on
Multitube AMTEC Converters,"
Orbital Sciences Corporation,
Germantown MD.

2 GPHS version, 6.3 kg 79 We after 12 years

3 GPHS version, 8.0 kg 133 W_e after 12 years

with Cassini spare GPHSS

AMTEC Critical Issues

Issues and Concerns

- » Microgravity Demonstration
 - Multicell Performance
- » Systems Performance Demonstration
 - Validate performance prediction code
- » System Lifetime Development

BASE Tube

Anode & Cathode

Sodium Wick

Materials compatibility with sodium

• S. Steel, Mo, coatings, brazes, volatile constituents (Cu, Ag)

Electrical Feedthrough at 300 "C

. Metals & braze in sodium, air, vacuum

Multitube cells& system lifetime prediction

Flight design cells life verification

Accomplishments to Date

- » AMTEC Flight Experiment being developed for launch on STS-88
- » AFPL 8 cell prototypic test
 - by summer 1997
 - 900 "C hot end, 300 "C cold end
- » Lifetime

Single Cell:

2500 hrs at prototypic temp >10,000 hrs at lower temp (separate

cell)

BASE Tube:

No obsewed degradation

Evidence that ceramic gets stronger

Wick

Heat pipe data supports long life

times

Anode & Cathode:

Long life predictions

Brazes:

No obsewed failures, eliminate Cu

and Ag components

APL

AMTEC Fundamentals

• AMTEC - Alkali Metal Thermal-to-Electric Converter

- » Thermally Regenerated Sodium Concentration Cell
- » Static System with working fluid circulated in a capillary wick
- » Thermal to electric efficiency predicted 20 to 30%
- » Industry Developer: Advanced Modular Power Systems (AMPS) of Ann Arbor, MI.

Recent AMTEC Advances

- » Cell operation at 18% efficiency
- » Demonstration of multi tube cells that promise up to 30% efficiency
- » Lifetimes > 1 year (not at design temperatures)
- » Component lifetime models predict very long life possible
- » Flight Validation Experiment in progress
 - included successful shock and vibration test of cells
- » Systems design predict 15 to 18 W/kg possible at the ~100 W level with GPHSS

AMTEC Development Status - Systems Demonstration

AFPL/NASA Funded Demonstration

- » One half of a generator, electrically heated
- DOE RFP plans
 - » Includes AMTEC development as the converter technology
 - » Full Scale Engineering Prototype (electrically heated)
 - First by end of 1998
 - Second by mid 1999, Delivered to DOE for NASA/JPL Testing
 - » Qualification Model delivered by end of 1999 (electrically heated)

AMTEC Development Status - Lifetime Validation

AMPS Program

- » Demonstrated lifetime of operations cells
- » Demonstrated and Projected lifetime of components

JPL Program re-started

- » Will build on existing models
- » Will evaluate AMPS cells and components
- » Will incorporate accelerated testing

DOE RFP Includes Lifetime Validation

» Will be coordinated with JPL and AMPS

AMTEC Development Status - Microgravity Demonstration

- AMTEC Flight Experiment
- Manifested on STS-88
 - » Launch date TBD (along with first 1SS assembly flight)
- Data Analysis and Report Complete 3 months after launch